SKYWORIS

DATA SHEET

SKY13642-485LF: 5 MHz to 1.5 GHz Ultra-High-Linearity SP6T 75Ω Switch

Applications

- Cable modems
- Set-top boxes
- Filter band switching
- Relay/replacement to switch between DOCSIS 3.0 and DOCSIS 3.1 configurations

Features

- Ultra-high-linearity performance:
- CTB $<-100 \mathrm{dBc}$
- CSO <-100 dBc
- Low insertion loss: 0.45 dB typical @ 1.5 GHz
- High isolation: >28 dB @ 1.5 GHz
- No external DC blocking capacitors required
- DC supply voltage: 2.5 V to 4.8 V
- Integrated logic
- Small QFN (14-pin, $2.0 \times 2.0 \mathrm{~mm}$) package (MSL1, $260{ }^{\circ} \mathrm{C}$ per JEDEC J-STD-020)

Figure 1. SKY13642-485LF Block Diagram

Skyworks Green ${ }^{\text {TM }}$ products are compliant with all applicable legislation and are halogen-free. For additional information, refer to Skyworks Definition of Green ${ }^{T M}$, document number SQ04-0074.

Description

The SKY13642-485LF is a single pole, six-throw (SP6T) 75Ω switch. The high-linearity performance and low insertion loss of the SKY13642-485LF meet the most stringent requirements of DOCSIS 3.1 applications.
The SKY13642-485LF is a "reflective short" on the isolated port.

Switching is controlled by three CMOS/TTL-compatible control voltage inputs (V1, V2, and V3). Depending on the logic voltage level applied to the control pins, the RFC pin is connected to one of six switched RF outputs (RF1 to RF6) using a low insertion loss path, while the paths between the RFC pin and the other RF pins are in a high isolation state. No external blocking capacitors are required on the RF paths unless VDC is externally applied.
The SKY13642-485LF is manufactured in a compact, 14-pin $2.0 \times 2.0 \mathrm{~mm}$, Quad Flat No-Lead (QFN) package.
A functional block diagram is shown in Figure 1. The pin configuration and package are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

Pin	Name	Description	Pin	Name	Description
1	RF5	RF I/O path 5	9	RF2	RF I/O path 2
2	RF3	RF I/O path 3	10	RF4	RF I/O path 4
3	RF1	RF I/O path 1	11	RF6	RF I/O path 6
4	VDD	DC power supply	12	$\mathrm{N} / \mathrm{C}^{1}$	Not connected
5	V3	DC control voltage 3	13	RFC	Common port
6	V2	DC control voltage 2	14	$\mathrm{N} / \mathrm{C}^{1}$	Not connected
7	V1	DC control voltage 1	15	Heat slug/GND ${ }^{1}$	Must be connected to ground
8	N / C^{1}	Not connected			

[^0]
Functional Description

The SKY13642-485LF includes an internal negative voltage generator and decoder that eliminate the need for external DC blocking capacitors on the RF ports. No external components are required for proper operation. DC decoupling capacitors may be added on the VDD and control lines if necessary.
Switching is controlled by three control voltage inputs, V1, V2, and V 3 . Depending on the logic voltage level applied to the control pins, the RFC pin is connected to one of six switched RF outputs.
A seventh state enables RF3 and RF5 at the same time. The output power measured at RF3 and RF5 in this state is 3 dB less than the typical insertion loss.

Shutdown mode is enabled by connecting all three control pins (V1, V2, and V3) to logic high. This mode reduces the overall current consumption of the device to $5 \mu \mathrm{~A}$ typical.

Table 2. SKY13642-485LF Absolute Maximum Ratings ${ }^{1}$

Parameter	Symbol	Minimum	Maximum	Units
Supply voltage ()	VDD	2.5	5.0	V
Control voltage (V1, V2, and V3)	VCtL	-0.5	+3.0	V
RF input power (RF1 to RF6), 0.1 to 1.5 GHz	PIN		+84.5	dBmV
Operating temperature	Top	-40	+85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tsta	-55	+150	${ }^{\circ} \mathrm{C}$
Electrostatic discharge: Charged-Device Model (CDM), Class C3 Human Body Model (HBM), Class 1B	ESD		$\begin{gathered} 500 \\ 1000 \end{gathered}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$

1 Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

ESD HANDLING: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This device must be protected at all times from ESD when handling or transporting. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD handling precautions should be used at all times.

Table 3. SKY13642-485LF General Electrical Specifications
(Vod = 2.6 V, V1 = V2 = V3 = 0/1.8 V, Pin = $\mathbf{4 7} \mathbf{d B m V}$, Top = +25 ${ }^{\circ}$ C, Characteristic Impedance [Z0] = $\mathbf{7 5} \Omega$, Unless Otherwise Noted)

[^1]Table 4. SKY13642-485LF Control Logic ${ }^{1}$

| Control Pins | | | | RFC to Switched RF Outputs | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V1
 (Pin 7) | V2
 (Pin 6) | V3
 (Pin 5) | RF1
 (Pin 3) | RF2
 (Pin 9) | RF3
 (Pin 2) | RF4
 (Pin 10) | RF5
 (Pin 1) | RF6
 (Pin 11) |
| 0 | 0 | 0 | Insertion Loss | Isolation | Isolation | Isolation | Isolation | Isolation |
| 0 | 0 | 1 | Isolation | Insertion Loss | Isolation | Isolation | Isolation | Isolation |
| 0 | 1 | 0 | Isolation | Isolation | Insertion Loss | Isolation | Isolation | Isolation |
| 0 | 1 | 1 | Isolation | Isolation | Isolation | Insertion Loss | Isolation | Isolation |
| 1 | 0 | 0 | Isolation | Isolation | Isolation | Isolation | Insertion Loss | Isolation |
| 1 | 0 | 1 | Isolation | Isolation | Isolation | Isolation | Isolation | Insertion Loss |
| 1 | 1 | 0 | Isolation | Isolation | Insertion Loss | Isolation | Insertion Loss | Isolation |
| 1 | | | | | | | | |

"High" = 1.8 V ; "Low" $=0 \mathrm{~V}$. Any state other than that described in this table places the switch into an andefined state. An undefined state will not damage the device.
Insertion loss in $\mathrm{V} 1 / \mathrm{V} 2 / \mathrm{V} 3=110 \mathrm{~b}$ state is 3 dB lower than typical insertion loss.

Table 5. Isolation Matrix (Common Port RFC \leftrightarrow Output Port N) () of 2)

Selected Output Port	Frequency (MHz)	Isolation (Common Port RFC \leftrightarrow Output Port N) (typical) (dB)					
		RF1	RF2	RF3	RF4	RF5	RF6
RF1	50	Insertion Loss	-75	-72	-70	-66	-65
RF1	250	Insertion Loss	-61	-62	-57	-53	-52
RF1	500	Insertion Loss	-54	-53	-50	-47	-45
RF1	750	Insertion Loss	-52	-48	-48	-44	-44
RF1	1000	Insertion Loss	-49	-44	-46	-41	-42
RF1	1250	Insertion Loss	-45	-41	-42	-37	-39
RF1	1500	Insertion Loss	-46	-45	-42	-37	-39
RF2	50	-75	Insertion Loss	-69	-71	-65	-68
RF2	250	-60	Insertion Loss	-55	-59	-51	-55
RF2	500	-54	Insertion Loss	-48	-50	-44	-48
RF2	750	-51	Insertion Loss	-47	-47	-43	-45
RF2	1000	-49	Insertion Loss	-45	-44	-41	-42
RF2	1250	-45	Insertion Loss	-41	-42	-38	-37
RF2	1500	-45	Insertion Loss	-42	-46	-38	-38
RF3	50	-69	-75	Insertion Loss	-71	-76	-66
RF3	250	-57	-60	Insertion Loss	-57	-73	-52
RF3	500	-48	-54	Insertion Loss	-50	-56	-46
RF3	750	-45	-51	Insertion Loss	-48	-48	-44
RF3	1000	-43	-49	Insertion Loss	-46	-43	-43
RF3	1250	-42	-45	Insertion Loss	-42	-38	-39
RF3	1500	-47	-45	Insertion Loss	-43	-38	-39

Table 5. Isolation Matrix (Common Port RFC \leftrightarrow Output Port N) (2 of 2)

Selected Output Port	$\begin{gathered} \text { Frequency } \\ \text { (MHz) } \end{gathered}$	Isolation (Common Port RFC \leftrightarrow Output Port N) (typical) (dB)					
		RF1	RF2	RF3	RF4	RF5	RF6
RF4	50	-73	-68	-70	Insertion Loss	-66	-74
RF4	250	-59	-55	-56	Insertion Loss	-52	-73
RF4	500	-53	-47	-48	Insertion Loss	-45	-57
RF4	750	-51	-44	-47	Insertion Loss	-43	-49
RF4	1000	-48	-43	-45	Insertion Loss	-41	-43
RF4	1250	-44	-42	-42	Insertion Loss	-38	-38
RF4	1500	-45	-49	-42	Insertion Loss	-38	-39
RF5	50	-77	-75	-69	-72	Insertion Loss	-68
RF5	250	-72	-61	-57	-58	Insertion Loss	-54
RF5	500	-61	-54	-49	-51	Insertion Loss	-47
RF5	750	-54	-52	-45	-49	Insertion Loss	-45
RF5	1000	-48	-49	-43	-47	Insertion Loss	-43
RF5	1250	-43	-45	-41	-43	Insertion Loss	-40
RF5	1500	-44	-46	-45	-43	Insertion Loss	-40
RF6	50	-72	77	-70	-70	-67	Insertion Loss
RF6	250	-60	-72	-56	-56	-53	Insertion Loss
RF6	500	-53	-62	-49	-48	-46	Insertion Loss
RF6	750	-51		-48	-45	-44	Insertion Loss
RF6	1000	-49	-48	-46	-44	-42	Insertion Loss
RF6	1250	-45	-44	-42	-42	-39	Insertion Loss
RF6	1500	-45	-45	-42	-48	-39	Insertion Loss

Table 6. Isolation Matrix (Selected Output Port \leftrightarrow Output Port N) (1 of 2)

Selected Output Port	Frequency (MHz)	Isolation (Selected Output Port \leftrightarrow Output Port N) (typical) (dB)					
		RF1	RF2	RF3	RF4	RF5	RF6
RF1	50	Common Port terminated	-83	-59	-83	-72	-71
RF1	250	Common Port terminated	-69	-45	-73	-58	-60
RF1	500	Common Port terminated	-62	-39	-63	-51	-52
RF1	750	Common Port terminated	-57	-37	-59	-48	-50
RF1	1000	Common Port terminated	-53			-44	-49
RF1	1250	Common Port terminated	-49	-31		-39	-48
RF1	1500	Common Port terminated	-50		-54	-40	-54
RF2	50	-85	Common Port terminated	-79	-59	-68	-69
RF2	250	-71	Common Port terminated	-67	-45	-57	-57
RF2	500	-63	Common Port terminated	-58	-38	-50	-49
RF2	750	-58	Common Port terminated	-55	-36	-48	-46
RF2	1000	-54	Common Port terminated	-53	-34	-47	-43
RF2	1250	-49	Common Port terminated	-52	-31	-47	-39
RF2	1500	-50	Common Port terminated	-56	-32	-52	-39
RF3	50	-58	-85	Common Port terminated	-83	-62	-73
RF3	250	-45	-70	Common Port terminated	-74	-47	-61
RF3	500	-38	-63	Common Port terminated	-64	-40	-53
RF3	750	-36	-59	Common Port terminated	-58	-38	-51
RF3	1000	-34	-54	Common Port terminated	-55	-36	-49
RF3	1250	-31	-50	Common Port terminated	-51	-32	-49
RF3	1500	-31	-51	Common Port terminated	-53	-33	-54

Table 6. Isolation Matrix (Selected Output Port \leftrightarrow Output Port N) (2 of 2)

"ON" Port	Frequency (MHz)	Isolation (Selected Output Port \leftrightarrow Output Port N) (typical) (dB)					
		RF1	RF2	RF3	RF4	RF5	RF6
RF4	50	-95	-58	-81	Common Port terminated	-71	-61
RF4	250	-75	-44	-68	Common Port terminated	-58	-47
RF4	500	-66	-37	-60	Common Port terminated	-50	-40
RF4	750	-60	-35	-57	Common Port terminated	-49	-38
RF4	1000	-55	-33	-54	Common Port terminated	-47	-36
RF4	1250	-50	-31	-52	Common Port terminated	-47	-32
RF4	1500	-51	-31	-55	Common Port terminated	-51	-33
RF5	50	-64	-85		-92	Common Port terminated	-76
RF5	250	-50		-45	-81	Common Port terminated	-64
RF5	500	-44		-38	-66	Common Port terminated	-56
RF5	750	-42		-36	-59	Common Port terminated	-53
RF5	1000	-40	-53	-34	-54	Common Port terminated	-50
RF5	1250	-36	-49	-31	-50	Common Port terminated	-48
RF5	1500	-37	-50	-31	-51	Common Port terminated	-51
RF6	50	-90	-63	-82	-58	-73	Common Port terminated
RF6	250	-72	-50	-72	-44	-61	Common Port terminated
RF6	500	-64	-43	-63	-38	-53	Common Port terminated
RF6	750	-59	-41	-58	-36	-50	Common Port terminated
RF6	1000	-54	-39	-54	-34	-49	Common Port terminated
RF6	1250	-50	-36	-51	-31	-47	Common Port terminated
RF6	1500	-51	-37	-53	-31	-52	Common Port terminated

Evaluation Board Description

The SKY13642-485LF Evaluation Board is used to test the performance of the SKY13642-485LF SP6T Switch.

An Evaluation Board schematic diagram is provided in Figure 3. An assembly drawing for the Evaluation Board is shown in Figure 4. A photograph of a typical Evaluation Board is shown in Figure 5. Table 7 lists the Bill of Materials (BOM) for the Evaluation Board.

Figure 3. SKY13642-485LF Evaluation Board Schematic

Figure 4. SKY13642-485LF Evaluation Board Assembly Diagram

Figure 5. SKY13642-485LF Evaluation Board Photograph

Table 7. SKY13642-485LF Bill of Materials (BOM)

Component	Description	Value	Mfr Part Number	Vendor
J1	Header, in-line	5 pos.	$5-146280-5$	TE Connectivity
L1 - L7	Inductor, 0201	3.3 nH	LQP03TN3N3B00D	Murata
RFC - RF7	Connector, F	75Ω	$861 V 509 E R 6$	Bomar Interconnect
PCB			PTW23-D755-001	South Coast Circuits
U1	RF Switch, SP6T	75Ω	SKY13642-485LF	Skyworks

Package Dimensions

The PCB layout footprint for the SKY13642-485LF is provided in Figure 6. Typical part markings are shown in Figure 7. Package dimensions are shown in Figure 8, and tape and reel dimensions are provided in Figure 9.

Package and Handling Information

Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.
The SKY13642-485LF is rated to Moisture Sensitivity Level 1 (MSL1) at $260^{\circ} \mathrm{C}$. It can be used for lead or lead-free soldering. For additional information, refer to the Skyworks Application Note, PCB Design \& SMT Assembly/Rework Guidelines for MCM-L Packages, document number 101752.
Care must be taken when attaching this product, whether it is done fanually or in a production solder reflow environment. Production quantities of this product are shipped in a standard

All measurements in millimeters
Figure 6. SKY13642-485LF PCB Layout Footprint (Top View)

Figure 8. SKY13642-485LF Package Dimensions

Ordering Information

Part Number	Product Description	Evaluation Board Part Number
SKY13642-485LF	5 MHz to 1.5 GHz Ultra-High-Linearity SP6T 75Ω Switch	SKY13642-485LF-EVB

Copyright © 2017-2018 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks and the Skyworks symbol are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

[^0]: 1 Note that the Heat Slug/GND (Pin 15) is the only valid connection to ground. The N/C pins $(8,12,14)$ are not wire-bonded internally and cannot be used for grounding.

[^1]: 1 Performance is guaranteed.
 2 Typical performance only; not guaranteed.

