

ADVANCE DATA SHEET

SKY77435 Front-End Module for WCDMA / HSDPA / HSUPA (Tx 1710-1770 MHz), (Rx 2110-2170 MHz)

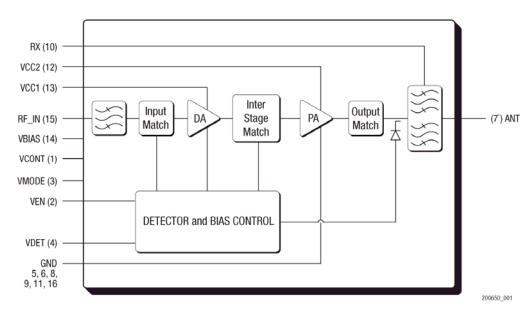
Applications

 Digital cellular (WCMDA) handsets

Features

- High Speed Downlink Packet Access (HSDPA)
- High Speed Uplink Packet Access (HSUPA)
- Low quiescent current
 - 20 mA
- Low current consumption
 530 mA
- Integrated Power Detector
- 16-pad package
- Small profile
 - 7 mm x 4 mm x 1.1 mm
- · Low voltage
 - 3.1 V-4.45 V
- · Digital enable pad
- Highly integrated, user friendly solution
- InGaP HBT
- Integrated interstage filter and duplexer
- Requires few external components

NEW


Skyworks Green™ products are lead (Pb)-free, RoHS (Restriction of Hazardous Substances)-compliant, conform to the EIA/EICTA/JEITA Joint Industry Guide (JlG) Level A guidelines, and are free from antimony trioxide and brominated flame retardants

Description

The SKY77435 Front-End Module (FEM) is a fully matched, 16-pad surface mount module developed for WCDMA applications. Small and efficient, this WCDMA FEM integrates the interstage filter, the input matching, the power amplifier, the output matching, the power detection, and the duplexer into a single 7 mm x 4 mm x 1.1 mm package.

The SKY77435 meets the stringent spectral requirements of HSDPA standards up to 25.2 dBm output power. The FEM incorporates an InGaP HBT PA and contains circuitry to optimize power detector performance. Different control pads are available to enhance the performance of the FEM at different power levels.

Integration of the RF front-end greatly simplifies the design of the handset radio as all critical matching between the interstage filter, PA, power detection, and duplexer is optimized within the module. By optimizing the efficiency of the InGaP HBT PA MMIC and reducing the RF loss between the integrated components, this FEM achieves current as low as 450 mA at maximum output power (25.2 dBm) that significantly improves the talk time of the WCDMA handset. This small package uses Skyworks' low cost, multi-laminate substrate technology and is approximately half the size of individually packaged component solutions. The SKY77435 front-end module can save handset designers significant board space and design-cycle time.

Figure 1. Functional Block Diagram

1

Electrical Specifications

The following tables list the electrical characteristics of the SKY77435 Front-End Module for WCDMA. Table 1 lists the absolute maximum ratings and Table 2 specifies the recommended operating conditions necessary to achieve the electrical performance listed in Table 3. Table 4 through Table 7

defines the standard test configurations for WCDMA, HSDPA, and HSUPA modes. Table 8 provides specifications for Power Detection. Table 9 and Table 10 specifies the Nominal Duplexer Performance for Band IV and Band X, respectively..

Table 1. Absolute Ratings 1

Paramet	er	Symbol	Minimum	Nominal	Maximum	Unit
RF Input Power		Pin	_	_	10.0	dBm
Supply Voltages	No RF	VCC1, VCC2, VBIAS	_	3.4	6.0	Volt
	With RF		_	3.4	4.7	Volt
Bias Control Voltage		VCONT	_	_	2.7	Volt
Mode Control Voltage		VMODE	_	_	3.0	Volts
Enable Control Voltage		Ven	_	_	3.0	Volt
Temperatures	Operating	TCASE	-20	+25	+110	°C
	Storage	Тѕтс	-55	_	+125	

¹ No damage assuming only one parameter at a time is set to limit with all other parameters set at nominal values.

Table 2. Recommended Operating Conditions

		•	•			
Param	eter	Symbol	Minimum	Nominal	Maximum	Unit
Tx Channel Center Frequency		Fтx	1712.4	1740.0	1767.6	MHz
Rx Channel Center Frequency		FRx = FTx + 400 MHz	2112.4	2140.0	2167.6	MHz
Supply Voltages		VCC1, VCC2	3.1 ¹	3.4	4.45	Volt
		VBIAS	3.1	3.4	4.45	
Bias Control Voltage		VCONT	0.5	_	1.9	Volt
Mode Control	Low Power Mode (LPM)	Vmode_L	1.5	1.8	2.85	Volt
	High Power Mode (HPM)	Vmode_h	0.0	0.0	0.56	
Enable Control Setting	Disabled	Ven_L	0.0	0.0	0.56	Volt
	Enabled	Ven_H	1.5	1.8	2.85	
Operating Temperature		TCASE	-20	+25	+85	°C

¹ For VCC < 3.4 V, maximum output power = PMAX2

Table 3. Electrical Specifications for Nominal Operating Conditions ¹

Param	eter		Symbol	Conditions	Minimum	Typical	Maximum	Unit
Linear Output Power			Рмір	HPM, LPM Vcc ≥ 3.1 V	10.0	_	_	dBm
			PMAX2	HPM Vcc ≥ 3.1 V	24.4	_	_	
			PMAX1	НРМ	25.2	_	_	
Gain		Mid Power	Gмid	LPM PMID	11.0	_	23.0	dB
		High Power	Gнідн	Vcc = 3.4 V PMAX1 TCASE = 25 °C	19.5	_	28.5	
Gain Flatness Over Freque	ncy		$\Delta GPWR$	Each Tx Frequency	-2.5	_	2.5	dB
Current Consumption	Band IV	Mid Power	Icc	LPM PMID	_	_	50	mA
		High Power		PMAX1	_	_	530	
	Band X	Mid Power		LPM PMID	_	_	50	
		High Power		PMAX1	_	_	530	
Power Added Efficiency	Band IV	Mid Power	PAE_MID	LPM PMID	5.4	_	_	%
		High Power	PAE_HIGH	Рмах1	18.4	_	_	
	Band X	Mid Power	PAE_MID	LPM PMID	5.4	_	_	
		High Power	PAE_HIGH	Рмах1	18.4	_	_	
Error Vector Magnitude			EVM	_			5	%
Adjacent Channel Leakage	Ratio ²	5 MHz	ACL1	_	_	-40	_	dBc
		10 MHz	ACL2		_	-54	_	
Harmonic Suppression		Second	2f0	PMAX1	_	_	-33	dBm
		Third	3fo		_	_	-33	
Tx Noise Power in Rx Band	d		NRx1	PMAX1 869–894 MHz RBW = 3.84 MHz	_	_	-61	dBm
			NRx2	PMAX1 1575.42 MHz RBW = 2.046 MHz	_	_	-100	
			NRx3	PMAX1 1930–1990 MHz RBW = 3.84 MHz	_	_	-61	
			NRx4	PMAX1 2110–2170 MHz RBW = 3.84 MHz	_	_	-114	
			NRx5	PMAX1 2400–2483.5 MHz RBW = 1.0 MHz	_	_	-90	

Table 3.	[continued]	Electrical S	Specifications	for Nominal	Operating	Conditions 1
----------	-------------	--------------	-----------------------	-------------	------------------	--------------

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Input Voltage Standing Wave Ratio	VSWR	_	_	_	2:1	
Quiescent Current	Ica	_	_	_	18	mA
Control Current	Іва	_	_	_	1	mA
Digital Enable Current	len	_	_	_	1	mA
Leakage Current	ILEAK	VCC1, VCC2, VBIAS = 4.45 V VCONT = 0 V VEN = 0.2 V VMODE_H = 0 V	_	_	20	μА
Stability (spurious output)	S	8:1 VSWR, all phases	_	_	-65	dBc
Ruggedness ³	Ru	_	10:1	_	_	

 $^{^{1}}$ Unless otherwise specified: VCC = 3.4 V, Temp. = 25 °C.

Table 4. Standard Test Configuration – STC1 WCDMA Mode

Parameter	Level	Spread Code	Spread Factor	I/Q	βc	βd	βhs	βес	βed	Relative Power (dB)
DPCCH	15 kbps	0	256	Q	8/15	_	_	_	_	-6.547
DPDCH	60 kbps	16	64	Ţ	_	15/15	_	_	_	-1.087

Table 5. Standard Test Configuration – STC2 HSDPA Mode

Parameter	Level	Spread Code	Spread Factor	I/Q	βc	βd	βhs	βес	βed	Relative Power (dB)
DPCCH	15 kbps	0	256	Q	12/15	_	_	_	_	-7.095
DPDCH	60 kbps	16	64	1	_	15/15	_	_	_	-5.157
HS-DPCCH	15 kbps	64	256	Q	_	_	24/15	_	_	-3.012

Table 6. Standard Test Configuration – STC3 HSUPA Mode

a.		a.				_	_		_	_
Parameter	Level	Spread Code	Spread Factor	I/Q	βc	βd	βhs	βес	βed	Relative Power (dB)
DPCCH	15 kbps	0	256	Q	8/15					-19.391
DPDCH	960 kbps	1	4	1	_	15/15	_	_	_	-13.931
HS- DPCCH	15 kbps	64	256	Q	_	_	8/15	_	_	-19.391
E-DPCCH	15 kbps	1	256	I	_	_	_	10/15	_	-17.338
E-DPDCH	960 kbps	2	4	1	_	_	_	_	71.5/15	-0.371

 $^{^2}$ For STC1 WCDMA, STC2 HSDPA, and STC3 HSUPA modes test conditions. For STC4 HSUPA, power back off = 2.6 dB.

³ ACLR is specified per 3GPP as the ratio of in-band power to adjacent power, both measured in 3.84 MHz bandwidth at specified offsets.

 $^{^4}$ All phases, time = 10 seconds, continuous WCDMA/HSDPA modulated signal.

Table 7. Standard Test Configuration – STC4 HSUPA Mode

Parameter	Level	Spread Code	Spread Factor	I/Q	βc	βd	βhs	βес	βed	Relative Power (dB)
DPCCH	15 kbps	0	256	Q	6/15	_	_	_	_	-12.499
DPDCH	960 kbps	1	4	1	_	15/15	_	_	_	-4.540
HS- DPCCH	15 kbps	64	256	Q	_	_	2/15	_	_	-22.041
E-DPCCH	15 kbps	1	256	1	_	_	_	12/15	_	-6.478
E-DPDCH	960 kbps	2	4	1	_	_	_	_	15/15	-4.425

Table 8. Electrical Specifications for Power Detector

		Tx Power Detection				
Characteristic	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Power Detect Range	PDET		0.0	_	26.2	dBm
Detector Output Range	VDET	$3 \text{ dBm} \leq P_0 \leq 26.2 \text{ dBm}$	400 (rms)	_	1800 (peak)	mV

Table 9. Nominal Duplexer Performance – Band IV7

			Antenna to Rx Parameter				
Characte	ristic	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Insertion Loss		ILRx	2110 MHz2170 MHz			2.5	dB
Ripple			Each Rx Frequency	-0.5	_	0.5	dB
Attenuation			DC12750 MHz	20	_	_	dB
		ARx1	390 MHz410 MHz	40	_	_	
		ARx2	703 MHz724 MHz	30		_	
		A Rx3	1055 MHz1085 MHz	45		_	
		ARx4	1310 MHz1370 MHz	35		_	
	Tx Band	ARx5	1710 MHz1770 MHz	50	_	_	
		ARx6	1910 MHz1970 MHz	25		_	
	Tx + Rx	ARx7	3820 MHz3940 MHz	35		_	
	2Tx + Rx	ARx8	5530 MHz5710 MHz	35	_	_	
VSWR			_	_		2.0:1	
Input			_	_	_	30	dBm
Tx Power @ Rx Port			1710 MHz1770 MHz PMAX1	_	_	-25	dBm

Table 10. Nominal Duplexer Performance – Band X8

			nonina bupicker i errormanec bana k				
			Antenna to Rx Parameter				
Character	istic	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Insertion Loss		ILRx	2110 MHz2170 MHz	_	_	2.8	dB
Ripple			Each Rx Frequency	-0.5	_	0.5	dB
Attenuation			DC12750 MHz	20	_	_	dB
		A Rx1	390 MHz410 MHz	40	_	_	
		ARx2	703 MHz724 MHz	30	_	_	
		A Rx3	1055 MHz1085 MHz	45	_	_	
		ARx4	1310 MHz1370 MHz	35	_	_	
	Tx Band	ARx5	1710 MHz1770 MHz	50	_	_	
		ARx6	1910 MHz1970 MHz	25	_	_	
	Tx + Rx	A Rx7	3820 MHz3940 MHz	35	_	_	
	2Tx + Rx	ARx8	5530 MHz5710 MHz	35	_	_	
VSWR			_	_	_	2.0:1	
Input			_	_	_	30	dBm
Tx Power @ Rx Port			1710 MHz1770 MHz PMAX1	_	_	-25	dBm

Evaluation Board Description

The evaluation board is a platform for testing and interfacing design circuitry. To accommodate the interface testing of the SKY77435, the evaluation board schematic and the basic

assembly diagram are included for preliminary analysis and design. Figure 2 is a simple schematic of the board assembly in Figure 3.

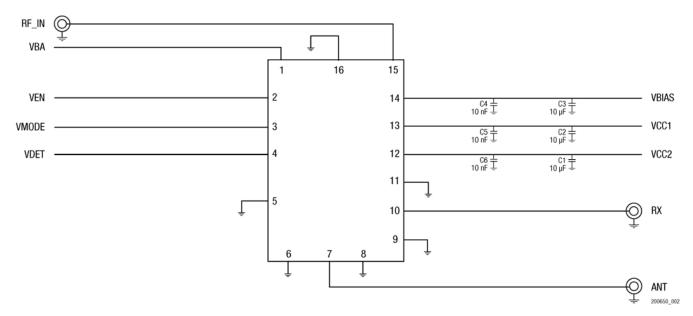


Figure 2. SKY77435 Evaluation Board Schematic Diagram

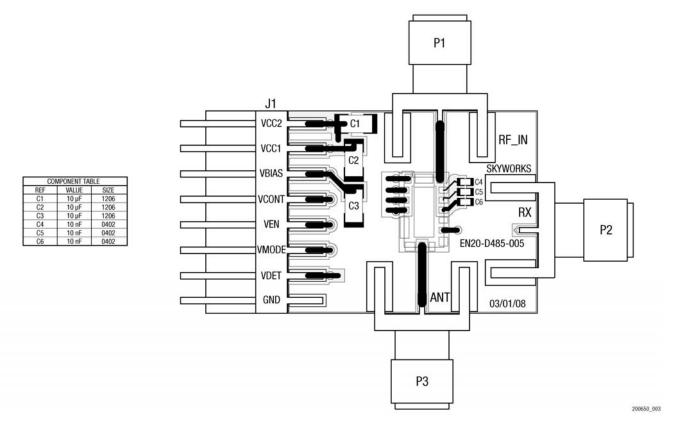
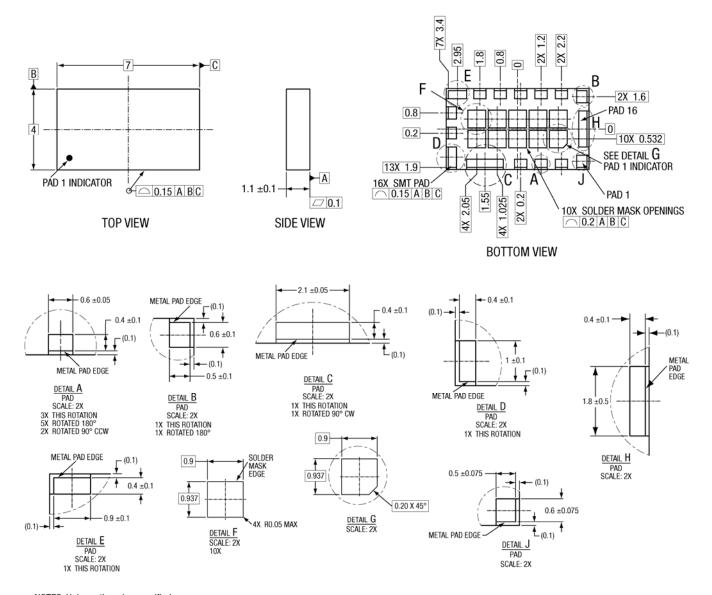
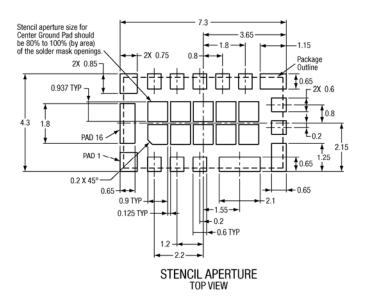



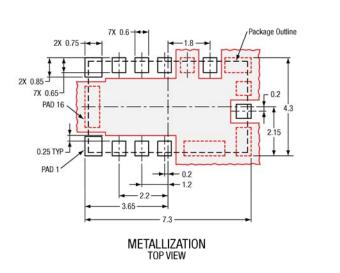
Figure 3. SKY77435 Evaluation Board Assembly Diagram

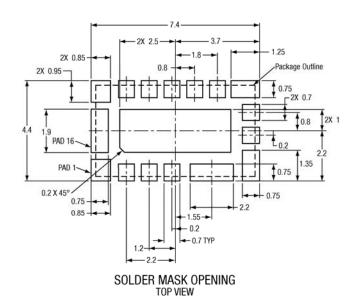
Package Dimensions

The SKY77435 is a multi-layer laminate base, overmold encapsulated modular package designed for surface-mounted solder attachment to a printed circuit board. Figure 4 is a mechanical drawing of the pad layout for this package. Figure 5

provides a recommended phone board layout footprint for the FEM to help the designer attain optimum thermal conductivity, good grounding, and minimum RF discontinuity for the 50 ohm terminals.



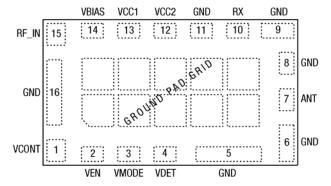

NOTES: Unless otherwise specified.


- 1. Dimensioning and Tolerancing in accordance with ASME Y14.5M-1994.
- All dimensions are in millimeters.
- 3. Pads are Solder Mask Defined on 3 edges & metal defined on 1 edge.

DS00089-2 REV. 1 200650_004

Figure 4. Dimensional Diagram for 7 x 4 x 1.1 mm, 6-Pad Package (All Views) - SKY77435

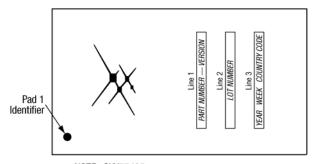
NOTES: UNLESS OTHERWISE SPECIFIED.


- 1. DIMENSIONING AND TOLERANCING IN ACCORDANCE WITH ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS.

DS00089-2 REV. 1

Figure 5. Phone PCB Layout Footprint for 7 x 4 mm, 16-Pad Package – SKY77435

Package Description


Figure 6 shows each pad name and the pad numbering convention, which starts with pad 1 in the upper left, as indicated and increments counter-clockwise around the package. Figure 7 illustrates typical case markings.

Pad layout as seen from Top View looking through package.

200650_00

Figure 6. SKY77435 16-Pad Configuration - (Top View)

NOTE: SKY77435
Lines 1, 2, 3 have a maximum of 11 characters
YEAR = Year of Manufacture
WEEK = Week Package Was Sealed
Country Code = Country of Manufacture (MX)

200650_006

Figure 7. Typical Case Markings (Top View)

Package Handling Information

Because of its sensitivity to moisture absorption, this device package is baked and vacuum-packed prior to shipment. Instructions on the shipping container label must be followed regarding exposure to moisture after the container seal is broken, otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SKY77435 is currently qualified for MSL3/260 °C. Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. If the part is attached in a reflow oven, the temperature ramp rate should not exceed 3 °C per second; maximum temperature should not exceed 260 °C. If the part is manually attached, precaution should be taken to insure that the part is not subjected to temperatures exceeding 260 °C for more than 10 seconds. For details on attachment techniques, precautions, and handling procedures recommended by Skyworks, please refer to Skyworks Application Note: *PCB Design and SMT Assembly/Rework*, Document Number 101752. Additional information on standard SMT reflow profiles can also be found in the *JEDEC Standard J–STD–020*.

Production quantities of this product are shipped in the standard tape-and-reel format. For packaging details, refer to Skyworks Application Note: *Tape and Reel – RF Modules*, Document Number 101568.

Electrostatic Discharge Sensitivity (ESD)

To avoid ESD damage, both latent and visible, it is very important that the product assembly and test areas follow the Class 1 ESD handling precautions listed below.

- Personnel Grounding
 - Wrist Straps
- Conductive Smocks, Gloves and Finger Cots
- Antistatic ID Badges
- Protective Workstation
 - Dissipative Table Top
 - Protective Test Equipment (Properly Grounded)
 - Grounded Tip Soldering Irons
- Solder Conductive Suckers
- Static Sensors
- Facility
 - Relative Humidity Control and Air Ionizers
 - Dissipative Floors (less than $10^9 \Omega$ to GND)
- Protective Packaging and Transportation
 - Bags and Pouches (Faraday Shield)
- Protective Tote Boxes (Conductive Static Shielding)
- Protective Trays
- Grounded Carts
- Protective Work Order Holders

Ordering Information

Model Number	Manufacturing Part Number	Product Revision	Package	Operating Temperature
SKY77435	SKY77435		MCM 4 x 7 x 1.1 mm	−20 °C…+85 °C

Revision History

Revision	Date	Description	
А	December 2, 2008	Initial Release – Advance Information	

References

Skyworks Application Note: Tape and Reel – RF Modules, Document Number 101568

Skyworks Application Note: PCB Design and SMT Assembly/Rework, Document Number 101752

JEDEC Standard J-STD-020

© 2008, Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SILICH DAMAGE

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, "Breakthrough Simplicity," DCR, Helios, HIP3, Innovation to Go, Intera, iPAC, LIPA, Polar Loop, and System Smart are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.